Filename: prob38.pl
#!/usr/bin/perl -w ## Problem 38 # Take the number 192 and multiply it by each of 1, 2, and 3: # # 192 1 = 192 # 192 2 = 384 # 192 3 = 576 # By concatenating each product we get the 1 to 9 pandigital, 192384576. We will call 192384576 the concatenated product of 192 and (1,2,3) # # The same can be achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5, giving the pandigital, 918273645, which is the concatenated product of 9 and (1,2,3,4,5). # # What is the largest 1 to 9 pandigital 9-digit number that can be formed as the concatenated product of an integer with (1,2, ... , n) where n 1? use strict; for(my $i=1; $i<99999; $i = $i+1) { my $working_string = ""; while(length($working_string) < 9) { for(my $j=1; length($working_string) < 9;$j = $j+1) { my $num_to_concat = $i*$j; $working_string = sprintf("$working_string" . "$num_to_concat"); } } if(isPandigital($working_string)) { print "PANDIGITAL! $i $working_string\n"; } } sub isPandigital { my $num = shift; if(length($num) != 9) { return 0; } my $pandigits = "123456789"; my $ordered_digits = join("", sort(split("", $num))); if($pandigits eq $ordered_digits) { return 1; } else { return 0; } }
syntax highlighted by Code2HTML, v. 0.9.1
No comments:
Post a Comment